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Abstract— This paper presents a low-cost and flexible plat-
form for bio-inspired machine olfaction, which aims to ex-
tend traditional electronic nose approaches by adding fluid-
mechanical and spatiotemporal dimensions. The TruffleBot
contains an array of chemical, pressure, and temperature
sensors in a small embedded platform. By “sniffing” vapors
in a temporally-modulated sequence through four different air
paths across eight sensor locations, we introduce spatial and
temporal information that significantly enhances classification
of odors. Using only chemical time series, we demonstrate 91%
cross-validated classification accuracy for nine odors. With the
addition of pressure and temperature time series, TruffleBot’s
classification accuracy can reach 95-98%.
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I. INTRODUCTION

A sense of smell is one of the most fundamental ways
that animals interact with the world [1]. Many groups
have worked towards bio-inspired machine olfaction [2],
particularly through the statistical interpretation of a diver-
sity of chemical measurements [3]. However, an important
insight into the biological process is that the brain takes
advantage of many types of non-chemical information when
analyzing odors, including temporal, spatial, mechanical,
hedonic, and contextual correlations [4], [5]. For example,
crayfish antennae contain multiple types of setae whose
outputs are processed jointly [6], and mammalian olfactory
neurons respond to both odors and pressure changes [7]. In
contrast, engineered chemical sensors often ignore this ancil-
lary information [8]–[11], and environmental conditions are
often considered only in the context of calibrating chemical
measurements [12].

Most implementations of e-noses comprise an array of
chemical sensors whose outputs are analyzed in parallel
at one discrete point in time. These designs are widely
employed across military, industrial, medical, and environ-
mental sciences, with applications ranging from explosives
and disease detection to environmental and industrial moni-
toring [3], [8]–[10], [12]–[15]. Recent advances in compact,
portable, and low-cost sensor designs have been comple-
mented by aggressive microelectronic integration [11], [16]–
[18].
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In this paper, we introduce the TruffleBot, an electronic
platform which classifies odors using multi-parametric envi-
ronmental information in order to improve upon traditional
e-noses. The TruffleBot simultaneously samples pressure,
temperature, and chemical time series, while “sniffing” in
a temporally modulated sequence which introduces spa-
tiotemporal time signatures, such as transport delays and
diffusive dynamics. We show how these multidimensional
signals depend on chemical and physical properties which
can be unique to a particular chemical. Additionally, the
odor plumes traverse a set of four different pathways which
have the aggregate effect of expanding the feature space and
separability of odors. We demonstrate how this approach,
which mirrors some of the dynamic contextual features of
animal olfaction [5], improves the performance and accuracy
of chemical sensing in a simple and low-cost hardware
platform.

II. SYSTEM ARCHITECTURE AND DESIGN

Fig. 1. (a) Schematic of the sensing circuits. Eight analog metal-oxide gas
sensors are digitized while a DAC controls their heater voltage. Eight digital
barometers on the board measure pressure and temperature. (b) An image of
the TruffleBot (top view). Pairs of barometers (brown) and chemical sensors
(cyan) are arranged in a 4× 2 array.

The TruffleBot is designed to be versatile and straightfor-
ward to reproduce and modify, and it is implemented as a
HAT (Hardware Attached on Top) with the same footprint
as a Raspberry Pi (85 mm × 56 mm). Figure 1 depicts the
salient components of the board along with key elements in
the electronic signal path. An array of eight sensor pairs are
arranged in four rows of two, with each position containing
one Volatile Organic Compound (VOC) sensor and one
digital barometer.

The VOC sensors (AMS CCS801) are micro-hotplate
metal-oxide (MOX) sensors with integrated resistive heaters.
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In a MOX gas sensor, a metal oxide film is heated to several
hundred degrees Celsius, to a temperature where its electrical
conductivity becomes sensitive to chemical interactions with
nearby gases. These interactions are complex and non-
specific, and MOX sensors will respond to the presence of
many different volatile molecules. The heaters of the eight
MOX sensors are driven from a common buffered DAC,
whose voltage controls the temperature of the sensors, and in
turn, affects their chemical sensitivity. The MOX resistivity
is converted to a voltage and routed through a multiplexer
into a high precision ADC (TI ADS1256).

The digital barometers (ST LPS22HB) are small MEMS
sensors with piezoresistive elements on a thin suspended
membrane. These chips measure both temperature and ab-
solute pressure at up to 75 samples per second through a
serial peripheral interface (SPI) bus.

The TruffleBot is powered entirely through the 5V and
3.3V rails of the Raspberry Pi, and consumes approximately
77 mW. The board also hosts several other supporting cir-
cuits, including a precision reference generator for the MOX
sensors, and transistors to switch external 5V peripherals
which may include solenoids and small air pumps. Other
peripherals can also be connected through USB. Including
the Raspberry Pi, components for one TruffleBot cost ap-
proximately $150.

The TruffleBot connects to a host computer over ethernet
or WiFi, and multiple TruffleBots can co-exist on the same
network. A Python host program initiates an experiment by
broadcasting a command for all TruffleBots to begin data
collection. When the trial concludes, the host automatically
retrieves the sensor traces from all clients for analysis in
MATLAB.

III. EXPERIMENTAL RESULTS

A. Sensor transient response

It is instructive to first consider the response of sensors at
a single location in the array. Figure 2 plots the temperature,
pressure and chemical response to a five second exposure
to odors from beer (≈ 6% ethanol). The output of the
VOC sensor is expressed as a percentage of its full scale
range, and the pressure and temperature signals deviate only
slightly from ambient. When beer odors are introduced, the
pressure decreases and the temperature increases; both the
polarity and magnitude of these changes depend on the
physical properties of the analyte vapor including its vapor
pressure, density, and molecular weight. These differences
contribute to TruffleBot’s overall chemical selectivity, and
will be explored in more detail in the following sections.

B. Response to different chemicals

Experiments were performed in the test bench shown in
Fig. 3. The output of a pump is regulated to a constant flow,
and a three-way solenoid valve (Takasago CTV-3) selectively
bypasses the analyte vapor. The solenoid position follows a
short binary control sequence, producing a concentration-
modulated release of analyte vapor [19], [20]. The analytes
used in these experiments were ambient air (control), apple

Fig. 2. Example sensor traces from a single array location, in response
to odors from beer (Lagunitas IPA, 6.2% ABV). When a constant flow of
air (850 sccm) is switched to beer odors for 5 seconds, the VOC sensor
resistance decreases, and when it switches back to air, it returns to its
initial value. The change in gas composition also produces small correlated
changes in the temperature and air pressure.

cider vinegar, lime juice, beer (6.2% ABV), wine (chardon-
nay, 13% ABV), vodka (40% ABV), ethanol (100% ABV),
isopropanol, and acetone. A manifold splits the fluid flow
between four small plastic columns that rest on the sensor
board. Each column contains different obstructions that affect
the airflows reaching the sensor array. (Other researchers
have similarly utilized differentially obstructed columns in
electronic noses [21], [22].) This arrangement allows us to
adjust multiple parameters including the overall airflow, the
solenoid’s temporal sequence, the analyte, and the geometries
and contents of the columns.

Fig. 3. (a) An illustration of the experimental setup for introducing
chemical vapors. A solenoid switches between clean air and analyte vapor,
at a constant flow rate. The airflow is then divided between four obstructed
paths, which lead to two sensors each. (b) Differences in the positions and
obstructions of four air paths produce different signals in each column, in
response to ethanol.

Figure 4 shows a comparison of the responses to air, vodka
and acetone, at a single array position. The baseline signal
levels are affected by noise and uncontrolled parameters
including ambient temperature, humidity, and atmospheric
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pressure. The solenoid control sequence is the same for all
trials, and the signal is represented by temporally correlated
changes in the sensor outputs. Assuming a lossless system
with fixed volumetric flow, the total absolute pressure in each
column head can be represented as

Pabs = Patm + Pext + Panalyte (1)
where Pext is the resulting pressure from the constant regu-
lated airflow and Patm and Panalyte are the partial pressures
exerted by atmospheric air and analyte vapor. (When the
solenoid bypasses the analyte, Panalyte = 0.) According to
the Darcy-Weisbach equation, pressure drop in a Newtonian
fluid flowing through a cylindrical tube is given by

∆p =
ρfLv2

2D
(2)

where ρ is the fluid density, v is the fluid velocity and f , L, D
are the friction coefficient, length, and diameter of the tube.
Since the flow is constant and tube properties do not change,
∆p only depends on ρ. Thus an analyte with vapor density
greater than air would incur more pressure loss in the tube,
resulting in a decrease in measured air pressure. For example,
Pabs decreases during the release of beer (ρ = 1.05 g/cm3)
but increases for vodka (ρ = 0.95 g/cm3).

These pressure changes, in combination with the analyte’s
physical properties (e.g. heat capacity), produce analyte-
specific temperature fluctuations. TruffleBot uses this infor-
mation to distinguish between analytes which have sim-
ilar MOX sensor responsivity, provided the pressure and
temperature changes observed are a systematic result of
the analyte’s physical properties. For example, in Fig. 4,
vodka and acetone could have been easily discriminated by
temperature and pressure alone.

C. Analyte Classification

The arrayed sensors and diverse airflow paths support the
extraction of temporal and spatial features. Using the setup
in Fig. 3, the same 40-bit “sniffing” sequence was applied at
1 bit/second for 8 different analytes. Representative data for
each odor is shown in Fig 5a. The first eight rows represent
VOC sensor traces, followed by eight rows of pressure
readings and eight rows of temperature readings. The mean
value has been subtracted from each trace. The control trials
with ambient air show only small deviations, and VOC
magnitudes appear to correlate with alcohol content, as one
might anticipate. Some odors do not have significant VOC
sensor response (lime, vinegar), but do show appreciable
pressure and temperature responses.

The experiment was repeated ten times for each analyte,
and feature vectors containing the mean, derivative, and
standard deviation were assembled from 0.5 second windows

Fig. 4. Sensor time series for air, vodka, and acetone at a single location.
In addition to the chemical sensor responsivity, both the direction and
magnitude of the pressure and temperature changes carry information about
the analyte.

of each of the 24 time series. We performed principal-
component analysis (PCA) on the combined sensor data of
the nine odor classes (Fig. 5b). Even with the first two
principal components, tightly grouped clusters emerged. We
then performed 2-fold cross-validation using a simple k-
means algorithm over 1000 iterations. This classification
approach is comparable to other e-nose demonstrations, and
is one of many possible classification strategies (Table I).

A cross-validation accuracy of 90.9% was achieved using
only the transient time series from the MOX sensors, com-
pared to 79.8% if the data is condensed to only one average
value per MOX sensor. Adding temperature and pressure
data, accuracy improved to 95.8%. The confusion matrix in
Fig. 5c and overlapping PCA clusters (Fig. 5b) show that
most of the errors occurred between lime and vinegar, both of
which are composites of the carboxyl group. Excluding data
for lime and repeating the classification for the remaining
odors yields an accuracy of 98.5%. These trends highlight
the value of the complementary sensor time series, as well as
the some of the challenges of comparing e-nose accuracies
across different sets of odors.

IV. CONCLUSION

We have presented a new multi-parametric platform for
odor classification, which is inspired by the fact that animals’
olfactory systems are not purely chemical but also rely on
mechanical and spatiotemporal cues. By incorporating tran-
sient sniffing features, air pressure, and temperature measure-
ments, TruffleBot achieves high accuracy odor classification

TABLE I
SENSOR ARRAYS FOR ODOR CLASSIFICATION

Sensors Measured Parameters Array Size Time Series Analytes Algorithm
This work Metal oxide & Mechanical chemical, pressure, temperature 8 (x3) Yes 8 PCA

Wang et al, 2017 [22] Metal oxide chemical 12 No 5 PNN
Harun et al, 2009 [21] Chemoresistive chemical 900 No 4 PNN

Wojnowski et al, 2017 [10] Electrochemical chemical 7 No 8 SVM
Shulaker et al, 2017 [11] Carbon nanotube FET chemical 2048 No 7 PCA
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Fig. 5. (a) Data from all 24 sensors, in response to air and 8 analyte odors. (The mean value has been subtracted from each time series.) (b) A scatter
plot of the first two principal components of the sensor data for the nine datasets. (c) Confusion matrix of the true odor vs. predicted odor. Most of the
errors are conflating lime and vinegar, while the remaining odors are identified with high accuracy.

in a flexible and low cost platform. Similar arrangements will
complement many types of chemical sensors. We note that
these results were achieved without specific optimization of
the fluid mechanical environment, and its success suggests
that there will be many exciting opportunities in the near
future for low-cost bio-inspired olfaction.
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